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ABSTRACT

Inverse reinforcement learning (IRL) is an on-policy approach to imitation learn-
ing (IL) that allows the learner to observe the consequences of their actions at
train-time. Accordingly, there are two seemingly contradictory desiderata for IRL
algorithms: (a) preventing the compounding errors that stymie offline approaches
like behavioral cloning and (b) avoiding the worst-case exploration complexity of
reinforcement learning (RL). Prior work has been able to achieve either (a) or (b)
but not both simultaneously. In our work, we first present a negative result show-
ing that, without further assumptions, there are no efficient IRL algorithms that
avoid compounding errors in the worst case. We then provide a positive result:
under a novel structural condition we term reward-agnostic policy completeness,
we prove that efficient IRL algorithms do avoid compounding errors, giving us
the best of both worlds. We then address a practical constraint—the case of lim-
ited expert data—and propose a principled method for using sub-optimal data to
further improve the sample-efficiency of IRL algorithms. Finally, we corroborate
our theory with experiments on a suite of continuous control tasks.

1 INTRODUCTION

Inverse reinforcement learning (IRL) is an on-policy approach to imitation learning that involves
simultaneously learning a reward function from expert demonstrations and a policy that optimizes
the learned reward (Ziebart et al., 2008a). IRL has been applied to a diverse set of applications,
including robotics (Ratliff et al., 2007; Abbeel & Ng, 2008; Ratliff et al., 2009; Silver et al., 2010;
Zucker et al., 2011), autonomous driving (Bronstein et al., 2022; Igl et al., 2022; Vinitsky et al.,
2022), and route finding (Ziebart et al., 2008a;b; Barnes et al., 2023).

Compared to offline imitation learning methods such as behavior cloning, IRL offers the follow-
ing advantages. First, IRL is more sample efficient, with respect to expert samples, than behavior
cloning (Swamy et al., 2021; 2022). Second, IRL offers better error scaling, with respect to the
horizon, than behavior cloning (Ross & Bagnell, 2010; Swamy et al., 2021; 2022). Unlike behavior
cloning, IRL is capable of avoiding quadratically compounding errors in the horizon (Ross & Bag-
nell, 2010; Swamy et al., 2021). In other words, for a fixed number of expert samples, IRL achieves
a tighter performance gap with the expert policy compared to behavior cloning. {NE: not sure we
need the last sentence; was looking to informally summarize the previous points for sub-optimal
reviewers}
However, the expert sample efficiency of traditional IRL comes at the cost of environment interac-
tions. Traditional IRL methods can require an exponential number of environment interactions in the
worst case (Swamy et al., 2023). Because the reward function and policy are learned simultaneously,
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IRL requires policy optimization to be performed repeatedly, making it susceptible to the worst-case
worst-case exploration complexity of reinforcement learning (RL) (Swamy et al., 2023). In order
to focus the exploration on useful states, prior work has leveraged the expert’s state distribution for
learner resets, resulting in an exponential speedup in interaction complexity (Swamy et al., 2023).

Unfortunately, the improvement of efficient IRL’s interaction efficiency sacrifices traditional IRL’s
linear error scaling. For example, Swamy et al. (2023)’s Moment Matching by Dynamic Program-
ming (MMDP) and No-Regret Moment Matching (NRMM) are exponentially faster than traditional
IRL algorithms, but they suffer from quadratically compounding errors in the horizon.

Based on the prior work, it seems that the two desiderata of IRL – interaction efficiency and avoid-
ance of compounding errors – are contradictory, with algorithms only being able to attain one or
the other. Our key insight is that the commonly imposed assumption of expert realizability (i.e. the
expert policy is within the learner’s policy class) is insufficient to address both interaction efficiency
and error scaling. In our paper, we introduce a novel structural condition, reward-agnostic policy
completeness, under which IRL can both be efficient and avoid compounding errors.

More explicitly, our contributions are as follows:

1. We first consider the agnostic setting, where no assumptions are made about the MDP’s
structure, and present a lower bound that shows it is impossible to learn a competitive policy
with polynomial environment interaction complexity in the worst case. In other words, efficient
IRL is not possible without assuming additional structure on the MDP.

2. We define a new structural condition, reward-agnostic policy completeness, under which our
efficient, reset-based IRL algorithm is capable of avoiding quadratically compounding errors.
Importantly, our analysis holds for approximate policy completeness, and the optimal (i.e. expert)
policy does not have to be in the policy class.

3. We extend our algorithm to address practical constraints, including limited expert data,
auxiliary sub-optimal data, and settings without access to arbitrary learner resets. We propose
a principled method for using sub-optimal data to improve sample-efficiency and the conditions
under which it does. We then conduct experiments demonstrating the benefit of sub-optimal data on
continuous control tasks where arbitrary learner resets are impossible.

2 RELATED WORK

Prior work in reinforcement learning (RL) has examined leveraging exploration distributions to im-
prove learning (Kakade & Langford, 2002; Bagnell et al., 2003; Ross et al., 2011). We adapt the
Policy Search via Dynamic Programming (PSDP) algorithm of Bagnell et al. (2003) as our RL
solver and leverage its performance guarantees in our analysis. Policy gradient RL algorithms lever-
age a policy completeness condition (Kakade & Langford, 2002; Bagnell et al., 2003; Agarwal et al.,
2019). Reward-agnostic policy completeness is an extension of policy completeness to the IRL set-
ting. Our paper also builds on work in agnostic RL. Jia et al. (2024) analyze the conditions for which
agnostic RL is statistically tractable. We use Jia et al. (2024)’s lower bound on agnostic RL with
expert feedback to show why agnostic IRL is hard.

Our work examines the issue of distribution shift due to compounding errors in IRL, which was
introduced by Ross & Bagnell (2010). Ross et al. (2011)’s DAgger algorithm is capable of avoiding
compounding errors but requires an interactive expert, which we do not assume in our setting.

We incorporate Swamy et al. (2023)’s novel approach of leveraging the expert’s state distribution
for learner resets. Our algorithm builds upon Swamy et al. (2023)’s MMDP and NRMM algorithms
by avoiding quadratically compounding error in the horizon.

Our algorithm and results are not limited to the tabular and linear MDP settings, differentiating
from some prior work in efficient imitation learning (Xu et al., 2023; Viano et al., 2024). Our work
also relates to (Shani et al., 2022), who propose a mirror descent based no-regret algorithm for
online apprenticeship learning (OAL). We similarly use a mirror descent based update to our reward
function, but differ from Shani et al. (2022)’s work by leveraging resets to expert and sub-optimal
data to improve the interaction efficiency of our algorithm.
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Poiani et al. (2024) propose a technique of incorporating sub-optimal experts as a means of ad-
dressing the ambiguity in IRL problems, specifically the lack of uniqueness in reward functions
that rationalize the observed behavior. Our work contrasts Poiani et al. (2024)’s because we do not
use sub-optimal data in learning a reward function, instead using it to improve policy optimization
training.

3 SETUP AND MOTIVATION

3.1 PROBLEM SETUP

Markov Decision Process We consider a finite-horizon Markov Decision Process (MDP),M =
⟨S,A, Ph, r

∗, H, µ⟩. S and A are the state space and action space, respectively. P = {Ph}Hh=1 is
the time-dependent transition function, where Ph : S × A → ∆(S). r∗ : S × A → [0, 1] is the
ground-truth reward function, which is unknown. Let R be the class of reward functions, such that
r : S × A → [0, 1] for all r ∈ R. H is the horizon, and µ ∈ ∆(S) is the starting state distribution.
Let Π = {π : S → ∆(A)} be the class of stationary policies. Let the class of non-stationary policies
be defined by ΠH = {πh : S → ∆(A)}Hh=1. A trajectory is given by τ = {(sh, ah, rh)}Hh=1, where
sh ∈ S, ah ∈ A, and rh = f(sh, ah) for some f ∈ R. The distribution over trajectories formed by a
policy is given by: ah ∼ π(· | sh), rh = Rh(sh, ah), and sh+1 ∼ Ph(· | sh, ah), for h = 1, . . . ,H .
Let dπs0,h(s) = Pπ[sh = s | s0] and dπs0(s) =

1
H

∑H
h=1 d

π
s0,h

(s). Overloading notation slightly, we
have dπµ = Es0∼µd

π
s0 .

We index the value function by the reward function, such that for any π ∈ ΠH and r ∈ R, V π
r,h(s) :=

Eτ∼π

[∑H
h′=h rh′ | sh = s

]
, and V π

r = Eτ∼π

∑H
h=1 r(sh, ah). We do a corresponding indexing for

the advantage function. We will overload notation such that a state-action pair can be sampled from
the visitation distributions, e.g. (s, a) ∼ dπµ and (s, a) ∼ ρE , as well as a state, e.g. s ∼ dπµ and

s ∼ ρE . Note that by definition of dπµ, Eτ∼π

[∑H
h=1 r(st, at)

]
= HE(s,a)∼dπ

µ
[r(s, a)].

Expert Data There exists an expert policy πE , of which a sample of its trajectories are known.
The dataset of state-action pairs sampled from the expert is DE = D1 ∪ D2 ∪ . . . ∪ DH , where
Dh = {sh, ah} ∼ dπE

µ,h and |DE | = N . Let ρh be a uniform distribution over the samples in Dh,
and ρE be a uniform distribution over the samples in DE .

Goal of IRL We adopt the formulation of Swamy et al. (2021), casting IRL as a Nash equilibrium
problem. The goal is to find a policy π such that

min
π∈Π

max
r∈R

J(πE , r)− J(π, r),

where J(π, r) = Eτ∼π

[∑T
t=0 r(st, at)

]
.

3.2 IRL IN THE AGNOSTIC SETTING

Before introducing any conditions or assumptions, we start by considering the most general setting
of IRL—indeed, the ultimate scenario in which we aim for IRL to succeed: the agnostic setting,
where no assumptions are made about the MDP’s structure, the policy class, or the expert’s policy
(i.e., we do not assume πE ∈ ΠH ).
Theorem 3.1 (Lower Bound on Agnostic RL with Expert Feedback (Jia et al., 2024)). For any
H ∈ N and C ∈ [2H ], there exists a policy class Π with |Π| = C, expert policy πE ̸∈ Π, and a
family of MDPsM with state space S of size O(2H), binary action space, and horizon H such that
any algorithm that returns a 1/4-optimal policy must either use Ω(C) queries to a generative model
or Ω(C) queries to the expert oracle Oexp : S × A → R, which returns QπE (s, a) (i.e. the Q value
of expert policy πE).

Theorem 3.1 presents a lower bound on agnostic RL with expert feedback. Specifically, it assumes
access to the true reward function and an expert oracle, Oexp : S×A → R, which returns QπE (s, a)
for a given state-action pair (s, a). The lower bound in Theorem 3.1 applies in the case where the
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expert oracle is replaced with a weaker expert action oracle (i.e. πE(s) : S → A) (Amortila et al.,
2022; Jia et al., 2024). In agnostic IRL, we consider the even weaker setting of having a dataset
of state-action pairs from the expert policy πE . It should be noted that the classical importance
sampling (IS) algorithm (Kearns et al., 1999) can be employed to find an approximately optimal
policy in the agnostic setting, but it requires an exponential number of interactions (Agarwal et al.,
2019; Jia et al., 2024).

From Theorem 3.1, we establish that polynomial sample complexity in the agnostic IRL setting,
where πE ̸∈ Π, cannot be guaranteed. In other words, efficient IRL is not possible with no structure
assumed on the MDP.

4 POLICY COMPLETE INVERSE REINFORCEMENT LEARNING

The result from Section 3.2, which establishes that efficient IRL is not possible in the agnostic
setting, motivates the question,

Under what conditions can efficient IRL algorithms avoid quadratically compounding errors?

Expert realizability, a commonly imposed assumption, fails to enable compound error avoidance
(Swamy et al., 2023). Instead, we look to a commonly used condition of policy gradient RL algo-
rithms, policy completeness. Policy completeness measures the policy class’s ability to approximate
the maximum possible advantage over the current policy. However, policy completeness depends
on the MDP’s reward function, which in the IRL setting is unknown and learned throughout train-
ing. We introduce reward-agnostic policy completeness, a generalization of policy completeness
extended to the IRL setting.

It remains an open question whether policy completeness is a necessary condition for policy gra-
dient algorithms to learn near global optimal policies, but it is a sufficient condition. Similarly,
reward-agnostic policy completeness is a sufficient condition under compounding errors in IRL can
be avoided efficiently, thereby learning a policy that more closely matches expert (i.e. optimal)
performance.

We first present reward-indexed policy completeness error. It corresponds to policy completeness
from the RL setting by specifying a particular reward function, ri, that represents a learned reward
function at an intermediate step during IRL (i.e. iteration i of some IRL algorithm). πi likewise
represents a learned policy during training.

Definition 4.1 (Reward-Indexed Policy Completeness Error). Given some expert state distribution
ρE , MDPMwith policy class Π and reward classR, learned policy πi, and learned reward function
ri, define the reward-indexed policy completeness error ofM to be

ϵπi,ri
Π := Es∼ρE

[
max
a∈A

Aπi
ri (s, a)

]
−max

π′∈Π
Es∼ρE

Ea∼π′(·|s)
[
Aπi

ri (s, a)
]
.

The reward-indexed policy completeness error measures how well the policy class can approximate
the advantage of optimal actions over policy πi under reward ri. Note that, because there are limited
guarantees on how closely ri will resemble the true reward r∗ during intermediate iterations of an
IRL algorithm, the expert policy may not be optimal under ri. This is why a maximum over all
possible actions is used, rather than sampling actions from the expert policy. In the worst case,
where the policy class is poorly restricted under the expert’s state distribution, then ϵπi,ri

Π = H due
to the bound on the reward function.

As previously noted, there are limited guarantees on the policies and reward functions learned dur-
ing intermediate iterations of an IRL algorithm. Consequently, we introduce reward-agnostic policy
completeness, which adversarially selects the learned policies and reward functions, πi and ri, re-
spectively.

Definition 4.2 (Reward-Agnostic Policy Completeness Error). Given some expert state distribu-
tion ρE and MDP M with policy class Π and reward class R, define the reward-agnostic policy
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Algorithm 1 Policy Search Via Dynamic Programming (Bagnell et al., 2003)

1: Input: Reward function ri, reset distribution ρ, and policy class Π
2: Output: Trained policy π
3: for h = H,H − 1, . . . , 1 do
4: Optimize

πh ← argmax
π′∈Π

Es∼ρEa∼π′(·|s)A
πh+1,...,πH
ri (s, a)

5: end for
6: Return π = {πh}Hh=1

completeness error ofM to be

ϵΠ := max
π∈Π,r∈R

ϵπ,rΠ

= max
π∈Π,r∈R

(
Es∼ρE

[
max
a∈A

Aπ
r (s, a)

]
−max

π′∈Π
Es∼ρE

Ea∼π′(·|s) [A
π
r (s, a)]

)
.

Reward-agnostic policy completeness is therefore a measure of the policy class’s ability to approxi-
mate the maximum possible advantage over the expert’s state distribution under any reward function
in the reward class. Note that 0 ≤ ϵπi,ri

Π ≤ ϵΠ ≤ H for any πi ∈ Π, ri ∈ R. In the approximate
policy completeness setting, we assume ϵΠ = O(1).

4.1 EFFICIENT IRL UNDER APPROXIMATE POLICY COMPLETENESS

We present GUiding ImiTaters with Arbitrary Roll-ins (GUITAR), an efficient, reset-based IRL
algorithm. Following Swamy et al. (2021)’s classification of IRL algorithms, we propose an efficient
dual-variant algorithm, where the discriminator is updated via a no-regret step, and the policy is
updated via a best-response step. We employ online mirror descent for the discriminator update,
such that our reward function is updated via

ri ← argmax
r∈R

L̂(πi−1, r) + η−1∆R(r | ri−1),

where ∆R is the Bregman divergence with respect to the negative entropy function R. L̂(π, r) is the
loss, defined by

L̂(π, r) = E(s,a)∼ρE
r(s, a)− E(s,a)∼dπ

µ
r(s, a),

with respect to the distribution of expert samples, ρE . Importantly, for our analysis, we assume that
the ground-truth reward function is realizable such that r∗ ∈ R.

We employ Bagnell et al. (2003)’s PSDP algorithm for the policy update step, shown in Algorithm 1.
We denote ρ as the reset distribution in PSDP, which we set to the expert state distribution, ρ = ρE .
In Section 5, we consider using other reset distributions. The IRL procedure is outlined in Algorithm
2.

4.2 ANALYSIS IN THE INFINITE-SAMPLE REGIME

For clarity, we first present the sample complexity of Algorithm 2 in the infinite expert sample
regime (i.e., when we have infinite samples from the expert policy, so ρE = dπE

µ ). We present the
finite sample regime in Section 5.2.
Theorem 4.3 (Sample Complexity of Algorithm 2). Consider the case of infinite expert data sam-
ples, such that ρE = dπE

µ . If πi = (πi,1, πi,2, . . . , πi,H) is the policy returned by ϵ-approximate
PSDP at iteration i ∈ [n] of Algorithm 2, then

V πE − V π ≤ H2ϵ+HϵΠ +H

√
ln |R|
n

,

where H is the horizon, n is the number of outer-loop iterations of the algorithm, and π is the
average of the learned policies (i.e. πi at each iteration i ∈ [n]).
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Algorithm 2 GUiding ImiTaters with Arbitrary Roll-ins (GUITAR)

1: Input: Expert state-action distributions ρE , offline state distributions ρS , policy class Π, reward
classR

2: Output: Trained policy π
3: Set π0 ∈ Π
4: for i = 1 to N do
5: Let

L̂(π, r) = E(s,a)∼ρE
r(s, a)− E(s,a)∼dπ

µ
r(s, a)

6: Optimize
ri ← argmax

r∈R
L̂(πi−1, r) + η−1∆R(r | ri−1).

7: Optimize
πi ← PSDP(ri)

8: end for
9: Return πi with lowest validation error

The error is comprised of three terms. The first term, H2ϵ, stems from the policy optimization error
of PSDP. It can be mitigated be improving the accuracy parameter ϵ of PSDP. Set to ϵ = 1

H , the term
is reduced to linear error in the horizon H . This error can be interpreted as representing a tradeoff
between environment interactions (i.e. computation) and error. By the approximate completeness
assumption, we

The second term, HϵΠ, stems from the richness of the policy class. In the worst case where the
policy class cannot approximate the maximum advantage, ϵΠ = H , resulting in quadratically com-
pounding errors. Unlike the policy optimization error, the policy completeness error cannot be
reduced with more environment interactions. Instead, it represents a fixed error that is a property of
the MDP, the policy class, and the reward class. Under the approximate policy completeness setting,
we assume ϵΠ = O(1), reducing the error to linear in the horizon.

Finally, the last term H
√

ln |R|
n stems from the regret of the online mirror descent update to the

reward function. Assuming approximate policy completeness, such that ϵΠ = O(1), Theorem 4.3
shows that quadratically compounding errors in the horizon can be avoided by setting a small accu-
racy parameter ϵ in the PSDP procedure.

5 LEVERAGING SUB-OPTIMAL DATA IN IRL

Recall the two desiderata of IRL, which motivate our algorithm and results: (1) prevent compound-
ing errors and (2) avoid the worst-case exploration complexity of RL. We accomplish the latter
with learner resets to expert states and the former with the approximate policy completeness. In
this section, we augment the stated theoretical motivations with common, practical constraints that
significantly impact IRL performance.

First, much of the prior work in efficient IRL focuses on the infinite expert sample regime (Swamy
et al., 2023). This is often an unreasonable assumption to make in practice, where collecting expert
data can be a resource-intensive process across many applications. In this section, we consider
the case of limited expert data and provide sample complexity bounds in this finite expert sample
regime.

Second, in cases where collecting expert data is expensive and thus limited, there is often access to
a larger source of offline, sub-optimal data. In this section, we describe how sub-optimal data can be
leveraged in IRL. Moreover, we describe the conditions under which sub-optimal data is beneficial
to IRL’s interaction efficiency.

Third, in applications including robotics and autonomous vehicles, there may not be access to arbi-
trary learner resets (i.e. the ability to reset the learner to any state, such as those of the expert). We
demonstrate how to handle such situations efficiently in Section 6.
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5.1 RESETTING TO SUB-OPTIMAL DATA

In addition to the expert dataset, we have an offline dataset Doff = {si, ai}Mi=1, where (s, a) ∼ dπB
µ

and πB is some behavior policy that is not necessarily as a high-quality as the expert πE . We measure
the overlap of πB to the expert πE using the standard concentrability coefficient: CB =

∥∥∥ d
πE
µ

d
πB
µ

∥∥∥
∞

.
We show that we can gain benefit of using Doff as long as CB < ∞ and the number of offline data
points M is large.

Let us define Dmix = DE ∪Doff and ρmix as the uniform distribution over Dmix. We will use ρmix as
the reset distribution for policy optimization. Let

ν =
N

N +M
dπE
µ +

M

N +M
dπB
µ .

Because GUITAR is a generalized, efficient IRL algorithm, no change to the algorithm is needed
to incorporate sub-optimal data. Instead, we simply set PSDP’s reset distribution to the mixture of
sub-optimal and expert states, ρ = ρmix. The reward update remains the same,1 and the approximate
policy completeness condition remains ϵΠ = O(1). The only modification to ϵΠ is a change in the
state distribution, replacing the distribution over expert samples, ρE , with the mixed distribution,
ρmix.

{NE: we could “generalize” ϵΠ to use PSDP’s reset distribution (or a general reset distribution) ρ
instead of the expert samples distribution ρE . this way, we don’t have to denote a change. it might
make the initial introduction of ϵΠ slightly less intuitive, but maybe not.}

5.2 ANALYSIS IN THE FINITE-SAMPLE REGIME

Next, we present the sample complexity bounds for GUITAR with sub-optimal data in the finite-
sample regime. For clarity, we present the case when ϵ = 0, as the ϵ > 0 case would follow
Theorem 4.3’s analysis.
Theorem 5.1 (Sample Complexity of Algorithm 2). Suppose that PSDP’s accuracy parameter is
set to ϵ = 0. Then, upon termination of Algorithm 2, with probability at least 1− δ, we have

V πE − V π ≤ Hmin

{
ϵΠ + ϵΠ

√
C0

N
,CB

(
ϵΠ + ϵΠ

√
C0

N +M

)}
+H

√
C

N
+H

√
C1

n
,

where H is the horizon, N is the number of expert state-action pairs, M is the number of offline
state-action pairs, n is the number of reward updates, C0 = 2 ln |Π||R|

δ , C = ln 2|R|
δ , C1 = 2 ln |R|,

and CB =
∥∥∥ d

πE
µ

d
πB
µ

∥∥∥
∞

.

Theorem 5.1 upper bounds the sample complexity of Algorithm 2 in the sub-optimal data setting
described in Section 5.1. The error consists of three terms. The first term stems from the policy
completeness error. The second term stems from the statistical error of estimating the expert policy’s
state distribution dπE

µ with the distribution over samples ρE . The third term stems from the regret
of the reward update. Unlike Theorem 4.3, which considers ϵ-approximate PSDP, Theorem 5.1
examines the case where ϵ = 0, resulting in a vanishing policy optimization error term. Importantly,
the assumption of ϵ = 0 is not necessary but rather convenient in simplifying the analysis. Moreover,
the ϵ > 0 case was presented in Theorem 4.3.

From Theorem 5.1, we observe the condition under which sub-optimal data benefits learning is when

ϵΠ + ϵΠ

√
C0

N
<

∥∥∥∥dπE
µ

dπB
µ

∥∥∥∥
∞

(
ϵΠ + ϵΠ

√
C0

N +M

)
.

When the sub-optimal data covers the expert data well, CB =
∥∥∥ d

πE
µ

d
πB
µ

∥∥∥
∞

is small, so the sub-optimal
data may be beneficial. Considering the special case where the “sub-optimal” data is collected from

1Incorporating sub-optimal data for the reward update may lead to learning a reward function that values
sub-optimal behavior as optimal.
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Figure 1: We see that GUITAR outperforms other IRL algorithms (FILTER and MM) on 4 out of
the 5 environments considered. Standard errors are computed across 5 seeds. For all MuJoCo tasks,
we use less than 1 full trajectory (100 expert state-action pairs for Ant and Humanoid, 300 state-
action pairs for Walker, and 600 state-action pairs for Hopper). For antmaze-large, we use 1
successful trajectory (1000 expert state-action pairs).

the expert policy πE , then CB =
∥∥∥d

πE
µ

d
πE
µ

∥∥∥
∞

= 1. The advantage bound becomes equivalent to the
case of having N+M number of expert data samples. However, because we only use the expert data
for the reward update, rather than the sub-optimal data, the reward error terms remain the same.

6 EXPERIMENTS

In this section, we aim to answer the following questions:

1. In settings without access to arbitrary learner resets, can the sample efficiency of IRL be
improved via roll-ins with a BC policy? We consider the scenario where the learner cannot be
reset to arbitrary states, so we cannot perform resets in the typical, efficient IRL method. Instead,
we roll-in with a BC policy trained on the intended reset distribution.

2. Does incorporating sub-optimal data improve the sample efficiency of efficient IRL in lim-
ited expert data settings? We consider the setting of limited expert data, which we supplement
with sub-optimal data. We compare the results of BC and IRL algorithms that exclusively use the
expert data to GUITAR, which incorporates both expert and sub-optimal data.

3. Do the benefits of sub-optimal data carry over to the hybrid setting? We test our algorithm on
the hard exploration tasks of antmaze-large, which standard IRL algorithms fail on (Ren et al.,
2024; Swamy et al., 2023). We extend GUITAR and the relevant baseline algorithm to incorporate
hybrid RL techniques, supplementing the on-policy learner data with off-policy expert data.

Because we wish to consider the low expert data regime, we use the minimum amount of expert
data that allows the baseline IRL algorithm to learn. For MuJoCo tasks, we use less than one
complete trajectory. For D4RL tasks, we use 1 successful trajectory (1000 state-action pairs). We
implement GUITAR with Soft Actor Critic (Haarnoja et al., 2018) for the policy and critic updates
and a discriminator network for reward labels. For the MuJoCo tasks, we generate sub-optimal data
by rolling out the expert policy with a probability pπb

tremble of sampling a random action. We consider
both high-quality offline data in the Walker and Hopper environments, each with pπB

tremble = 0.05,
and low-quality offline data in the Ant and Humanoid environments, where pπB

tremble = 0.25. For the
D4RL tasks, we generate sub-optimal data by dropping a proportion pdrop of the successful expert
trajectories in the D4RL dataset. Excluding the dropped trajectories, we use the remaining dataset
for sub-optimal data.

We compare GUITAR against the following baselines. First, we consider two variations of behavior
cloning (Pomerleau, 1988): the first being trained exclusively on the expert data, BC(πE), and the
second being trained on the combination of expert and sub-optimal data, BC(πE + πb). We also
compare against Swamy et al. (2021)’s moment-matching algorithm, MM, a traditional IRL algorithm
with the Jensen-Shannon divergence replaced by an integral probability metric. Finally, we compare
against FILTER (Swamy et al., 2023), an efficient IRL algorithm that exclusively leverages expert
data for resets. The sub-optimal data for the MuJoCo tasks was generated by rolling out the expert
policy with a certain probability of sampling random actions, pπb

tremble. Additional implementation
details can be found in C. The code is available at https://nico-espinosadice.github.
io/efficient-IRL.
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We see that the benefit of rolling in with a BC policy is dependent on the performance of the BC
policy. In environments where the BC policy performs poorly, FILTER does not outperform MM
(Ant, Humanoid, and Walker). However, by incorporating additional sub-optimal data, GUITAR is
able to outperform poor-performing BC policies (Ant and Humanoid) and consistently outperform
the other IRL algorithms.

7 DISCUSSION

We address the seemingly contradictory goals of preventing compounding errors in IRL and avoiding
the worst-case exploration complexity of RL. We introduce a novel structural condition, reward-
agnostic policy completeness, under which both compounding errors can be avoided efficiently.
We then present a reset-based IRL algorithm and perform a finite-sample analysis. Finally, we
identify the conditions under which sub-optimal data can be beneficial to the sample-efficiency
of the algorithm. One direction for future work is generalizing our policy optimization step to
other policy gradient algorithms beyond PSDP. Another direction is to empirically demonstrate the
tradeoff between the coverage and amount of sub-optimal data in terms of IRL performance.
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A PROOFS OF SECTION 4

A.1 PROOF OF THEOREM 4.3

Proof. We consider the imitation gap of the expert and the average of the learned policies π,

V πE − V π =
1

n

n∑
i=1

(
Eζ∼πE

H∑
h=1

r∗(s, a)− Eζ∼πi

H∑
h=1

r∗(s, a)

)

= H
1

n

n∑
i=1

(
E(s,a)∼d

πE
µ

r∗(s, a)− E(s,a)∼d
πi
µ
r∗(s, a)

)
= H

1

n

n∑
i=1

L(πi, r
∗)

≤ H
1

n
max
r∈R

n∑
i=1

L(πi, r)

≤ H
1

n
max
r∈R

n∑
i=1

L(πi, r)− L(πi, ri) + L(πi, ri)

= H
1

n
L(πi, ri) +H

1

n
max
r∈R

n∑
i=1

L(πi, r)− L(πi, ri)

Applying the regret bound of Online Mirror Descent (Theorem D.2), we have

V πE − V π ≤ H
1

n

n∑
i=1

L(πi, ri) +H

√
ln |R|
n

= H
1

n

n∑
i=1

(
1

H

H∑
h=1

E(sh,ah)∼d
πE
h

ri(sh, ah)−
1

H

H∑
h=1

E(sh,ah)∼d
πi
h
ri(sh, ah)

)
+H

√
ln |R|
n

=
1

n

n∑
i=1

(
Es∼µV

πE
ri − Es∼µV

πi
ri

)
+H

√
ln |R|
n

=
1

n

n∑
i=1

H−1∑
h=0

(
E(sh,ah)∼d

πE
h

Aπi

ri,h
(sh, ah)

)
+H

√
ln |R|
n

(1)

Focusing on the interior summation, we have

H−1∑
h=0

E(sh,ah)∼d
πE
h

Aπi

h (sh, ah) ≤
H−1∑
h=0

Esh∼d
πE
h

max
a∈A

Aπi

h (sh, a)

=

H−1∑
h=0

Esh∼d
πE
h

max
a∈A

Aπi

h (sh, a)− ϵΠ,h + ϵΠ,h

=

H−1∑
h=0

max
π′∈Π

Esh∼d
πE
h

Ea∼π′(·|s)A
πi

h (sh, a) + ϵΠ,h

≤ H2ϵ+HϵΠ,h (2)

where the last line holds by PSDP’s performance guarantee (Bagnell et al., 2003).

12



Preprint. Under Review

Applying (2) to (1), we have

V πE − V π ≤ 1

n

n∑
i=1

H−1∑
h=0

(
E(sh,ah)∼d

πE
h

Aπi

ri,h
(sh, ah)

)
+H

√
ln |R|
n

≤ 1

n

n∑
i=1

(
H2ϵ+HϵΠ,h

)
+H

√
ln |R|
n

≤ H2ϵ+HϵΠ +H

√
ln |R|
n

which completes the proof.
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B PROOFS OF SECTION 5

B.1 LEMMAS OF THEOREM 5.1

Lemma B.1 (Reward Regret Bound). Recall that

L̂(π, r) = E(s,a)∼ρE
r(s, a)− E(s,a)∼dπ

µ
r(s, a).

Suppose that we update the reward via the online mirror descent (ascent) algorithm. Since 0 ≤
r(s, a) ≤ 1 for all s, a, then supπ∈Π,r∈R L̂(π, r) ≤ 1. Applying Theorem D.2 with B = 1, the
regret is given by

λn = sup
r∈R

1

n

n∑
i=1

L̂(πi, r)−
1

n

n∑
i=1

L̂(πi, ri)

≤
√

2 ln |R|
n

=

√
C1

n
,

where C1 = 2 ln |R| and n is the number of updates.
Lemma B.2 (Statistical Difference of Losses). With probability at least 1− δ,

L(π, r) ≤ L̂(π, r) +

√
C

N
,

where C = ln 2|R|
δ and N is the number of state-action pairs from the expert.

Proof. By definition of L and L̂, for any π ∈ Π and r ∈ R, we have∣∣∣L(π, r)− L̂(π, r)
∣∣∣ = ∣∣∣E(s,a)∼d

πE
µ

r(s, a)− E(s,a)∼dπ
µ
r(s, a)−

(
E(s,a)∼ρE

r(s, a)− E(s,a)∼dπ
µ
r(s, a)

)∣∣∣
=
∣∣∣E(s,a)∼d

πE
µ

r(s, a)− E(s,a)∼ρE
r(s, a)

∣∣∣
=

∣∣∣∣∣∣E(s,a)∼d
πE
µ

r(s, a)− 1

N

N∑
(si,ai)∈DE

r(si, ai)

∣∣∣∣∣∣
≤
√

1

2N
ln

2|R|
δ

≤
√

C

N
,

where C = 4 ln 2|R|
δ . The fourth line holds by Hoeffding’s inequality and a union bound. Specifi-

cally, we apply Corollary D.1 with c = 1, since all rewards are bounded by 0 and 1. We take a union
bound over all reward functions in the reward class R. Note that the terms involving π cancel out,
so the union bound only applies to the reward function classR. Rearranging terms gives the desired
bound.

Lemma B.3 (Advantage Bound). Suppose that ϵ = 0 and reward function ri are the input parame-
ters to PSDP, and πi = (πi

1, π
i
2, . . . , π

i
H) is the output learned policy. Then, with probability at least

1− δ,

Es∼dπE max
a∈A

Aπi(s, a) ≤ min

{
ϵΠ + ϵΠ

√
C0

N
,CB

(
ϵΠ + ϵΠ

√
C0

N +M

)}

where CB =
∥∥∥ d

πE
µ

d
πB
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the

number of offline state-action pairs, and C0 = 2 ln |Π||R|
δ .
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Proof. Suppose that ϵ = 0 is the input accuracy parameter to PSDP, and the advantages are
computed under reward function ri. PSDP is guaranteed to terminate and output a policy πi =
(πi

1, π
i
2, . . . , π

i
H), such that

Hϵ ≥ max
π′∈Π

Esh∼ρmix,h
Ea∼π′(·|s)A

πi

h (sh, a)

for all h ∈ [H] (Bagnell et al., 2003). Consequently, we have

Hϵ ≥ max
π′∈Π

Es∼ρmixEa∼π′(·|s)A
πi(s, a)

= max
π′∈Π

Es∼ρmixEa∼π′(·|s)A
πi(s, a) + ϵΠ,ri − ϵΠ,ri

= Es∼ρmix max
a∈A

Aπi(s, a)− ϵΠ,ri

By definition, 0 ≤ ϵΠ,ri ≤ ϵΠ, so for any x ∈ R, x− ϵΠ,ri ≥ x− ϵΠ, so

Hϵ ≥ Es∼ρmix max
a∈A

Aπi(s, a)− ϵΠ.

Rearranging the terms gives us

Es∼ρmix max
a∈A

Aπi(s, a) ≤ Hϵ+ ϵΠ (3)

= ϵΠ,

where the last line holds by our assumption that ϵ = 0.

Case 1: Jettison Offline Data We will first consider the case where offline data is useless, in
which case we will focus on the expert data.

Note that maxa∈A Aπi(s, a) ≥ 0 for all s ∈ S and h ∈ [H]. Applying the definition of ρmix,

Es∼ρmix max
a∈A

Aπi(s, a) = Es∼ρE
max
a∈A

Aπi(s, a) + Es∼ρb
max
a∈A

Aπi(s, a).

Consequently, we know that

ϵΠ ≥ Es∼ρE
max
a∈A

Aπi(s, a) (4)

=
1

N

N∑
si∈DE

max
a∈A

Aπi(si, a)

Because maxa∈A Aπi(s, a) ≥ 0 for all s ∈ S and a ∈ A, we know maxa∈A Aπi(si, a) ≤ ϵΠ for
all si ∈ DE . We apply Hoeffding’s inequality (Corollary D.1) with c = ϵΠ

2 to bound the difference
between Es∼dπE maxa∈A Aπi(s, a) and Es∼ρE

maxa∈A Aπi(s, a). We apply a union bound on
the policy and reward function. As stated previously, maxa∈A Aπi(s, a) ≥ 0 for all s ∈ S. By
Hoeffding’s inequality, with probability 1− δ, we have∣∣∣∣Es∼d

πE
µ

max
a∈A

Aπi(s, a)− Es∼ρE
max
a∈A

Aπi(s, a)

∣∣∣∣ =
∣∣∣∣∣Es∼d

πE
µ

max
a∈A

Aπi(s, a)− 1

N

N∑
si∈DE

max
a∈A

Aπi(si, a)

∣∣∣∣∣
≤
√
ϵ2Π

1

2N
ln
|Π||R|

δ

≤ ϵΠ

√
C0

N
,

where C0 = 2 ln |Π||R|
δ . Note that the cardinality of the set of advantage functions over all possible

policies is upper bounded by the cardinalities of the policy and reward classes. Rearranging the
terms and applying (4) yields

Es∼d
πE
µ

max
a∈A

Aπi(s, a) ≤ ϵΠ + ϵΠ

√
C0

N
.
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Case 2: Leverage Offline Data Next, we consider the case where offline data is useful, specifi-
cally where there is good coverage of the expert data.

Next, we apply Hoeffding’s inequality (Corollary D.1) to bound the difference between
Es∼ν maxa∈A Aπi(s, a) and Es∼ρmix maxa∈A Aπi(s, a). We apply a union bound on the policy
and reward function. We use c = ϵ2Π for a similar argument to the one used in Case 1. As stated
previously, maxa∈A Aπi(s, a) ≥ 0 for all s ∈ S. By Hoeffding’s inequality, with probability 1− δ,
we have∣∣∣∣Es∼ν max

a∈A
Aπi(s, a)− Es∼ρmix max

a∈A
Aπi(s, a)

∣∣∣∣ =
∣∣∣∣∣Es∼ν max

a∈A
Aπi(s, a)− 1

N +M

N+M∑
si∈Dmix

max
a∈A

Aπi(si, a)

∣∣∣∣∣
≤

√
ϵΠ

1

2(N +M)
ln
|Π||R|

δ

≤ ϵΠ

√
C0

N +M
,

where C0 = 2 ln |Π||R|
δ . Note that the cardinality of the set of advantage functions over all possible

policies is upper bounded by the cardinalities of the policy and reward classes. Rearranging the
terms and applying (3) yields

Es∼ν max
a∈A

Aπi(s, a) ≤ ϵΠ + ϵΠ

√
C0

N +M
. (5)

By linearity of expectation, and using the fact that 1 ≤ CB <∞, we have

Es∼dπE max
a∈A

Aπi(s, a) =
N

N +M
Es∼dπE max

a∈A
Aπi(s, a) +

M

N +M
Es∼dπE max

a∈A
Aπi(s, a)

≤ N

N +M
Es∼dπE max

a∈A
Aπi(s, a) + CB

M

N +M
Es∼dπB max

a∈A
Aπi(s, a)

≤ CB
N

N +M
Es∼dπE max

a∈A
Aπi(s, a) + CB

M

N +M
Es∼dπB max

a∈A
Aπi(s, a)

= CB

(
N

N +M
Es∼dπE max

a∈A
Aπi(s, a) +

M

N +M
Es∼dπB max

a∈A
Aπi(s, a)

)

≤ CBEs∼ν max
a∈A

Aπi(s, a). (6)

Applying (6) to (5), we have

Es∼dπE max
a∈A

Aπi(s, a) ≤ CBEs∼ν max
a∈A

Aπi(s, a)

≤ CB

(
ϵΠ + ϵΠ

√
C0

N +M

)

Final Result Using the bounds from Case 1 and Case 2, we know that

Es∼dπE max
a∈A

Aπi(s, a) ≤ min

{
ϵΠ + ϵΠ

√
C0

N
,CB

(
ϵΠ + ϵΠ

√
C0

N +M

)}

where CB =
∥∥∥ d

πE
µ

d
πB
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the

number of offline state-action pairs, and C0 = 2 ln |Π||R|
δ .
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Lemma B.4 (Loss Bound). Suppose that ϵ = 0 and reward function ri are the input parameters to
PSDP, and πi = (πi

1, π
i
2, . . . , π

i
H) is the output learned policy. Then, with probability at least 1− δ,

L̂(πi, ri) ≤ min

{
ϵΠ + ϵΠ

√
C0

N
,CB

(
ϵΠ + ϵΠ

√
C0

N +M

)}
+

√
C

N
,

where CB =
∥∥∥ d

πE
µ

d
πB
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the

number of offline state-action pairs, C0 = 2 ln |Π||R|
δ , and C = ln 2|R|

δ .

Proof. By Lemma B.2, we have

L̂(πi, ri) ≤ L(πi, ri) +

√
C

N

= E(s,a)∼d
πE
µ

[ri(s, a)]− E(s,a)∼d
πi
µ
[ri(s, a)] +

√
C

N

=
1

H

(
V πE
ri − V πi

ri

)
+

√
C

N

=
1

H

(
H∑

h=1

E(sh,ah)∼d
πE
h

Aπi

ri,h
(sh, ah)

)
+

√
C

N

≤ 1

H

(
H∑

h=1

Esh∼d
πE
h

max
a∈A

Aπi

ri,h
(sh, a)

)
+

√
C

N

=
1

H

(
HEs∼dπE max

a∈A
Aπi

ri (s, a)

)
+

√
C

N

where C = ln 2|R|
δ . The second line holds by the definition of L(πi, ri), and the third line holds

by the definition of the reward-indexed value function. The fourth line holds by the Performance
Difference Lemma (PDL). Applying Lemma B.3, we have

L̂(πi, ri) ≤ min

{
ϵΠ + ϵΠ

√
C0

N
,CB

(
ϵΠ + ϵΠ

√
C0

N +M

)}
+

√
C

MN
,

where CB =
∥∥∥ d

πE
µ

d
πB
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the

number of offline state-action pairs, C0 = 2 ln |Π||R|
δ , and C = ln 2|R|

δ .

B.2 PROOF OF THEOREM 5.1

Proof. We consider the imitation gap of the expert and the averaged learned policies, π,

V πE − V π =
1

n

n∑
i=0

(
Eζ∼πE

[
H∑

h=1

r∗(sh, ah)

]
− Eζ∼πi

[
H∑

h=1

r∗(sh, ah)

])

=
1

n
H

n∑
i=0

(
E(s,a)∼d

πE
µ

[r∗(s, a)]− E(s,a)∼d
πi
µ
[r∗(s, a)]

)
=

1

n
H

n∑
i=0

L(πi, r
∗)

≤ 1

n
Hmax

r∈R

n∑
i=0

L(πi, r)

where n is the number of updates to the reward function. The second line holds by definition of dπµ.
The third line holds by definition of L. Applying the Statistical Difference of Losses (Lemma B.2),
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we have

V πE − V π ≤ 1

n
Hmax

r∈R

n∑
i=0

(
L̂(πi, r) +

√
C

N

)

=
1

n
Hmax

r∈R

n∑
i=0

(
L̂(πi, r)− L̂(πi, ri) + L̂(πi, ri) +

√
C

N

)

where C = ln 2|R|
δ and M is the number of state-action pairs from the expert. Applying the Reward

Regret Bound (Lemma B.1), we have

V πE − V π ≤ 1

n
H

n∑
i=0

(
L̂(πi, ri) +

√
C

N

)
+H

√
C1

n

where C1 = 2 ln |R|. Applying the Loss Bound (Lemma B.4), we have

V πE − V π ≤ 1

n
H

n∑
i=0

(
min

{
ϵΠ + ϵΠ

√
C0

N
,CB

(
ϵΠ + ϵΠ

√
C0

N +M

)}
+

√
C

N
,

)
+H

√
C1

n
,

which simplifies to

V πE − V π ≤ Hmin

{
ϵΠ + ϵΠ

√
C0

N
,CB

(
ϵΠ + ϵΠ

√
C0

N +M

)}
+H

√
C

N
,+H

√
C1

n
,

where CB =
∥∥∥ d

πE
µ

d
πB
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the

number of offline state-action pairs, n is the number of reward updates, C0 = 2 ln |Π||R|
δ , C =

ln 2|R|
δ , and C1 = 2 ln |R|.
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C IMPLEMENTATION DETAILS

We adapt Ren et al. (2024)’s codebase for our implementation and follow their implementation de-
tails. The details are restated here, with modifications where necessary. We apply Optimistic Adam
(Daskalakis et al., 2017) for all policy and discriminator optimization. We also apply gradient penal-
ties (Gulrajani et al., 2017) on all algorithms to stabilize the discriminator training. The policies,
value functions, and discriminators are all 2-layer ReLu networks with a hidden size of 256. We
sample 4 trajectories to use in the discriminator update at the end of each outer-loop iteration, and
a batch size of 4096. In all IRL variants (MM, FILTER, and GUITAR), we re-label the data with
the current reward function during policy improvement, rather than keeping the labels that were set
when the data was added to the replay buffer. Ren et al. (2024) empirically observed such re-labeling
to improve performance.

C.1 MUJOCO TASKS

We detail below the specific implementations used in all MuJoCo experiments (Ant, Hopper, Hu-
manoid, and Walker).

Expert Data. To experiment under the conditions of limited expert data, we set the amount of
expert data to be the lowest amount that still enabled the baseline IRL algorithms to learn. For Ant
and Humanoid, this was 100 expert state-action pairs. For Walker, this was 300 expert state-action
pairs. For Hopper, this was 600 expert state-action pairs.

Sub-optimal Data. We generate the sub-optimal data by rolling out the expert policy with a prob-
ability pπB

tremble of sampling a random action. pπB

tremble = 0.25 for the Ant and Humanoid environments,
and pπB

tremble = 0.05 for the Walker and Hopper environments.

Discriminator. For our discriminator, we start with a learning rate of 8e−4 and decay it linearly
over outer-loop iterations. We update the discriminator every 10,000 actor steps.

Baselines. We train all behavioral cloning baselines for 300k steps for Ant, Hopper, and Hu-
manoid, and 500,000 steps for Walker2d. For MM and FILTER baselines, we follow the exact
hyperparameters in Ren et al. (2024), with a notable modification to how resets are performed, dis-
cussed below. We use the Soft Actor Critic (Haarnoja et al., 2018) implementation provided by
Raffin et al. (2021) with the hyperparameters in Table 1.

PARAMETER VALUE

BUFFER SIZE 1E6
BATCH SIZE 256
γ 0.98
τ 0.02
TRAINING FREQ. 64
GRADIENT STEPS 64
LEARNING RATE LIN. SCHED. 7.3E-4
POLICY ARCHITECTURE 256 X 2
STATE-DEPENDENT EXPLORATION TRUE
TRAINING TIMESTEPS 1E6

Table 1: Hyperparameters for HyPE using SAC.

Reset Substitute. We mimic resets by training a BC policy on the reset distribution specified
by each algorithm. MM does not employ resets. FILTER’s reset distribution is the expert data.
GUITAR’s reset distribution is a mixture of the expert and sub-optimal data. The BC roll-in logic
follows Ren et al. (2024)’s reset logic. The probability of performing a non-starting-state reset (i.e.
an expert reset in FILTER) is α. If a non-starting-state reset is performed, we sample a random
timestep t between 0 and the horizon, and we roll-out the BC policy in the environment for t steps.
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GUITAR. GUITAR follows the same implementation and reset logic as FILTER, with the only
change being the training data for the BC roll-in policy.

C.2 D4RL TASKS

For the two antmaze-lage tasks, we use the data provided by Fu et al. (2020) as the expert
demonstrations. We append goal information to the observation for all algorithms following Ren
et al. (2024); Swamy et al. (2023). For our policy optimizer in every algorithm, we build upon the
TD3+BC implementation of Fujimoto & Gu (2021) with the default hyperparameters.

Expert Data. To experiment under the conditions of limited expert data, we set the amount of
expert data to 1 successful trajectory in the corresponding D4RL dataset.

Discriminator. For our discriminator, we start with a learning rate of 8e− 3 and decay it linearly
over outer-loop iterations. We update the discriminator every 5,000 actor steps.

Baselines. For behavioral cloning, we run the TD3+BC optimizer for 500,000 steps while zeroing
out the component of the actor update that depends on rewards. We use α = 0.5 for FILTER and
GUITAR. We provide all algorithms with the same expert data, consisting of 1 successful trajec-
tory in the corresponding D4RL dataset. All IRL algorithms are pretrained with 10,000 steps of
behavioral cloning on the expert dataset.

Sub-optimal Data. We generate sub-optimal data by dropping a proportion pdrop of the successful
expert trajectories in the corresponding D4RL dataset. Excluding the dropped trajectories, we use
the remaining dataset for sub-optimal data in GUITAR and BC(πE + πB).

GUITAR. We provide the entire sub-optimal dataset to GUITAR and BC(πE +πB), in addition to
the expert data. Like the other IRL algorithms, we pretrain GUITAR with 10,000 steps of behavioral
cloning on the expert dataset.
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D USEFUL LEMMAS

Theorem D.1 (Hoeffding’s Inequality). If Z1, . . . , ZM are independent with P (a ≤ Zi ≤ b) = 1
and common mean µ, then, with probability at least 1− δ,

|ZM − µ| ≤
√

c

2M
ln

2

δ

where c = 1
M

∑M
i=1(bi − ai)

2.

Lemma D.2 (Online Mirror Descent Regret). Regret is defined as

λN =
1

N

N∑
t=1

ℓ(ŷt, zt)− inf
f∈F

1

N

N∑
t=1

ℓ(f , zt).

Given F = ∆(F ′) and ⟨f ,∇t⟩ = Ef ′∼f [ℓ(f
′, (xt, yt))], where sup∇∈D∥∇∥∞ ≤ B, let R be any

1-strongly convex function. If we use the Mirror descent algorithm with η =

√
2 supf∈F R(f)

NB2 , then,

λn ≤
√

2B2 supf∈F R(f)

N
.

If R is the negative entropy function, then supf∈F R(f) ≤ log |F ′|.

21


	Introduction
	Related Work
	Setup and Motivation
	Problem Setup
	IRL in the Agnostic Setting

	Policy Complete Inverse Reinforcement Learning
	Efficient IRL Under Approximate Policy Completeness
	Analysis in the Infinite-Sample Regime

	Leveraging Sub-Optimal Data in IRL
	Resetting to Sub-Optimal Data
	Analysis in the Finite-Sample Regime

	Experiments
	Discussion
	Proofs of Section 4
	Proof of Theorem 4.3

	Proofs of Section 5
	Lemmas of Theorem 5.1
	Proof of Theorem 5.1

	Implementation Details
	MuJoCo Tasks
	D4RL Tasks

	Useful Lemmas

